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Abstract

This work, deal a brief introduction of multidimensional (M�) Fourier transform and its generalization. So,

we give the de�nition of such transformation and we establish their properties enriched by several illustrative

examples. Additionally, we give the intrinsic properties of the generalized version as: M�windowed,M�fractional,
M�linear canonical transform , and M�quadratic-phase Fourier transforms.

Some Keywords: Multidimensional Fourier transforms, Windowed Fourier transform, Fractional Fourier transform,
Linear canonical transform, Quadratic-phase Fourier transform.

1 Introduction

The harmonic analysis plays a central role in applied mathematics, engineering and signal processing. Its main

objective is certainly the frequency domain analysis and/or the spectral analysis which resides in the signal instead

of the time-domain approach. The last approach depends on the choice of the relationship equipped with the space:

In contrast; the frequency-domain allows us to implement some algorithms for estimating, modeling and forecasting

the signal independently on such an order chosen (partial or total) on the space. One, among others, concerns

the harmonic analysis is the Fourier transform (FT for short) which is used widely in various areas, it becomes a

powerful tool for analyzing linear, no-linear, stationary and non-stationary real data including volatility analysis,

�nancial mathematics and image processing and so on. Particularly, in time series analysis, it helps us to identify

some dataset encountered in practice. The fundamental limitation of the unidimensional FT is that, in practice,

certain signals are strongly depends on several indexes for instance spatio-temporal, spacial econometrics data, etc...

Thus the resort to multidimensional Fourier transform (MFT ) is however inevitable. However, theMFT have know

some limit or little uses because all properties of the signal are global in scope. Information about local features of

the signal becomes a global property of the signal in frequency domain. To remedy these drawbacks of MFT , we

introduce its generalization that includes short-time MFT (S�MFT ) by performing the MFT on a block-by-block
basis rather than to process the entire signal at once (see Bahat (2023) for more details). Moreover, di¤erent novel

generalizations of the classical MFT came into existence via.: the fractional MFT (F �MFT ), the linear canonical
MFT (L�MFT ), the quadratic-phase MFT (Q�MFT ), and so on. As a generalization of classical MFT , the
F �MFT , L�MFT and the Q�MFT gained its ground intermittently and profoundly in�uenced several branches
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of science and engineering including signal and image processing, quantum mechanics, neural networks, di¤erential

equations, optics, pattern recognition, radar, sonar, and communication systems.

The rest of the paper is organized as follow. In Section 2, we introduced the de�nition of the multidimensional

Fourier transform and some basic results from a mathematical point of view. Section 3, 4 and 5 respectively, studied

the multidimensional windowed Fourier transform, multidimensional fractional Fourier transform and multidimen-

sional linear canonical transform and its properties respectively. Finally, we introduced the notion of multidimensional

quadratic-phase Fourier transform. Section 7 concludes the article and we end with a summary table.

2 Multidimensional Fourier transform

In the sequel, if a = (a1; :::; an) and b = (b1; :::; bn) two vectors in Rn, we shall note ha;bi = a:b =
nP
i=1

aibi;

a
b = (

a1
b1
; :::; anbn ) if b1; :::; bn 6= 0; a � b means that ai � bi; i = 1; :::n:

De�nition 1 The multidimensional Fourier transform of any multidimensional signal x(t) 2 L2 (Rn) is de�ned and
denoted for all � 2Rn as

F [x (t)] (�) = bx (�) = 1�p
2�
�n Z

Rn
e�i�:tx (t) dt (2.1)

and corresponding inversion formula is given by

F�1 (F [x (t)] (�)) (t) = 1�p
2�
�n Z

Rn
ei�:tF [x (t)] (�) d�: (2.2)

x (t) =
1�p
2�
�n Z

Rn
ei�:tbx (�) d�:

Example 2.1 The most commonly used ones in image processing are the rect function in two dimensions:

rect (x; y) =

(
1 if jxj � 0:5 and jyj � 0:5;
0 otherwise.

The 2D Fourier transform

bx (u; v) = 1

(2�)

Z +1

�1

Z +1

�1
rect (x; y) e�i(u:x+v:y)dxdy =

1

(2�)

Z +0:5

�0:5

Z +0:5

�0:5
e�i(u:x+v:y)dxdy

=
1

(2�)

Z +0:5

�0:5
e�i(x:u)dx

Z +0:5

�0:5
e�i(v:y)dy =

sin�u

u
:
sin�v

v

= sin c(u): sin c(v)

where sin c (:) is the sinus cardinal function. (Note that the rect (x; y) is separable, the resulting 2-D Fourier transform

is the product of the corresponding 1�D Fourier transforms).
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Example 2.2 Two-dimensional Fourier transform of some functions is given in the following tables

x (t1; t2) F [x (t1; t2)] (�1; �2)
redt (t1; t2)

sin(��1)
��1

sin(��2)
��2

d.rect (at1; bt2) d
ab sin c

�
�1
a

�
sin c

�
�2
b

�
exp

n
� t

2
1+t

2
2

2

o
2� exp

�
�2�2

�
�21 + �

2
2

�	
exp

n
�2�

p
t21 + t

2
2

o
1
2�2

1

(1+�21+�22)
3=2

cos
�
�
�
t21 + t

2
2

��
sin
�
�
�
�21 + �

2
2

��
exp

�
i�
�
t21 + t

2
2

�	
i exp

�
�i�

�
�21 + �

2
2

�	
� (t1; t2) 1

The multidimensional Fourier transform has properties that are completely analogous to the familiar properties

of the 1D Fourier transform as shown in the following

Theorem 2.1 (Linearity) Let x(t) and y(t) in L2 (Rn) ; then

F [Ax(t) +By(t)] (�) = AF [x(t)] (�) +BF [y(t)] (�) :

Proof. Let s (t) = Ax(t) +By(t); then

F [s(t)] (�) = 1�p
2�
�n Z

Rn
e�i�:ts (t) dt

=
1�p
2�
�n Z

Rn
e�i�:t (Ax(t) +By(t)) dt

= A

"
1�p
2�
�n Z

Rn
e�i�:tx(t)dt

#
+B

"
1�p
2�
�n Z

Rn
e�i�:ty(t)dt

#
= AF [x(t)] (�) +BF [y(t)] (�) :

Theorem 2.2 (Translation) The multidimensional Fourier transform of any function x(t� k) is given by

F [x(t� k)] (�) = e�ik:�F [x(t)] (�) :

Proof. From De�nition (1), we have

F [x(t� k)] (�) = 1�p
2�
�n Z

Rn
e�i�:tx (t� k) dt

=
1�p
2�
�n Z

Rn
e�i�:(u+k)x (u) du;u = t� k

=
1�p
2�
�n Z

Rn
e�i�:ke�i�:ux (u) du

=
1�p
2�
�n e�i�:k Z

Rn
e�i�:ux (u) du

= e�i�:kF [x(t)] (�) :
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Theorem 2.3 (Modulation) The multidimensional Fourier transform of any function e�i�0:tx(t) is given by

F
�
e�i�0:tx(t)

�
(�) = F [x(t)] (� � �0) :

Proof. From De�nition, we have

F
�
ei�0:tx(t)

�
(�) =

1�p
2�
�n Z

Rn
e�it:�e�i�0:tx(t)dt

=
1�p
2�
�n Z

Rn
e�it:(���0)x (t) dt;

= F [x(t)] (� � �0) :

Theorem 2.4 The multidimensional Fourier transform of the functions x(t) and y(t) in L2 (Rn) satis�es the fol-
lowing orthogonality relation

hF [x(t)] ;F [y(u)]i = hx(t); y(u)i :

Proof. We have

hF [x(t)] ;F [y(u)]i =
Z
Rn
F [x(t)] (�)F [y(u)] (�)d�

=

Z
Rn

 
1p
(2�)

n

Z
Rn
e�i�:tx (t) dt

! 
1p
(2�)

n

Z
Rn
e�i�:uy (u) du

!
d�

=

Z
Rn

 
1p
(2�)

n

Z
Rn
e�i�:tx (t) dt

! 
1p
(2�)

n

Z
Rn
ei�:uy (u)du

!
d�

=

Z
Rn

Z
Rn
x (t) y (u)

�
1

(2�)
n

Z
Rn
ei�:(u�t)d�

�
dtdu

=

Z
Rn

Z
Rn
x (t) y (u) (� (u� t)) dtdu

=

Z
Rn
x (t) y (u)dt

= hx(t); y(u)i :

Next, we show that the multidimensional inverse Fourier operator is the adjoint of the multidimensional Fourier

operator.

Theorem 2.5 Let x(t) and y(t) in L2 (Rn) ; then

hF [x(t)] (�) ; y(�)i =


x(t);F�1 [y] (t)

�
:

4
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Proof. We have

hF [x(t)] (�) ; y(�)i =
Z
Rn
F [x(t)] (�) y (�)d�

=

Z
Rn

 
1�p
2�
�n Z

Rn
e�i�:tx (t) dt

!
y (�)d�

=

Z
Rn
x (t)

 
1�p
2�
�n Z

Rn
e�i�:ty (�)d�

!
dt

=

Z
Rn
x (t)

 
1�p
2�
�n Z

Rn
ei�:ty (�) d�

!
dt

=

Z
Rn
x (t)F�1 [y] (t)dt

=


x(t);F�1 [y] (t)

�
:

Theorem 2.6 (Convolution) Let x(t) and y(t) in L2 (Rn) ; then

F [(x � y) (t)] (�) = (2�)
n
2 F [x(t)] (�)F [y(t)] (�) :

where x � y denotes the convolution of the functions x(t) and y(t) and is given by

(x � y) (u) =
Z
Rn
x(t)y(u� t)dt:

Proof. By applying de�nition of multidimensional Fourier transform to the convolution of the functions x(t) and

y(t), we obtain

F [(x � y) (t)] (�) = 1�p
2�
�n Z

Rn
(x � y) (t) e�i�:tdt

=
1�p
2�
�n Z

Rn

�Z
Rn
x(u)y(t� u)du

�
e�i�:udu

=
1�p
2�
�n Z

Rn

Z
Rn
x(u)y(v)e�i�:(u+v)dvdu; where v = t� u

=
1�p
2�
�n Z

Rn

Z
Rn
e�i�:ux(u)y(v)e�i�:vdvdu

=
�p
2�
�n( 1�p

2�
�n Z

Rn
e�i�:ux(u)du

)(
1�p
2�
�n Z

Rn
e�i�:vy(v)dv

)
=
�p
2�
�n
F [x(t)] (�)F [y(t)] (�) :

Theorem 2.7 (Multiplication) Let x(t) and y(t) in L2 (Rn) ; then

F [x(t)y(t)] (�) = 1�p
2�
�nF [x(t)] (�) � F [y(t)] (�) :
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Proof. Let s(t) = x(t)y(t); then

F [s(t)] (�) = 1�p
2�
�n Z

Rn
x(t)y(t)e�i�:tdt

=
1�p
2�
�n Z

Rn
y(t)

 
1�p
2�
�n Z

Rn
ei�:tbx (�) d�! e�i�:tdt

=
1�p
2�
�n Z

Rn
bx (�) 1�p

2�
�n Z

Rn
y(t)e�i(���):te�i:tdt

!
d�

=
1�p
2�
�n Z

Rn
bx (�) by (� � �) d�

=
1�p
2�
�nF [x(t)] (�) � F [y(t)] (�) :

Theorem 2.8 (Linear transformation of the domain Rn) Let x(t) 2 L2 (Rn) ; then

F [x(At)] (�) = 1

jdet (A)jF [x(t)]
�
A�>�

�
;

where A is a nonsingular n� n matrix and A�T denotes
�
A>��1 = �A�1�> :

Proof. If we denote y (t) = x(At); then

F [y(t)] (�) = 1�p
2�
�n Z

Rn
e�i�:tx(At)dt

with the change of variables s = At; the Jacobian is @(s)
@(t) = det (A) ; and using standard techniques for change of

variables in an integral, we obtain

F [y(t)] (�) = 1

jdet (A)j
�p
2�
�n Z

Rn
e�i�:(A

�1s)x(s)ds

=
1

jdet (A)j
�p
2�
�n Z

Rn
e�i(A

�>�):sx(s)ds

=
1

jdet (A)jF [x(t)]
�
A�>�

�
where we use the identity a: (Cb) =

�
C>a

�
:b or equivalently a>:Cb =

�
C>a

�>
b:

Theorem 2.9 (Di¤erentiation) Let x(t) 2 L2 (Rn) ; then

F [rtx(t)] (�) = i�F [x(t)] (�) :

Proof. We de�ne the gradient vector y(t) = rtx(t) =
h
@x
@t1
; @x@t2 ; :::;

@x
@tn

i>
; taking the derivative of synthesis

equation for x to get the synthesis equation for yi

yi(t) =
@x

@ti
(t) =

1�p
2�
�n Z

Rn
bx(t)i�iei�:td�

Thus F [yi(t)] (�) = i�iF [x(t)] (�) and in matrix form F [y(t)] (�) = i�F [x(t)] (�) :

6
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Theorem 2.10 (Di¤erentiation in frequency) Let x(t) 2 L2 (Rn) ; then

F [tx(t)] (�) = ir�F [x(t)] (�) :

Proof. Let y(t) = tx(t); taking the derivative of analysis equation for x with respect to �i
@F [x(t)]
@�i

(�) =
1�p
2�
�n Z

Rn
x(t) (�iti) e�i�:tdt

= �i 1�p
2�
�n Z

Rn
yi(t)e

�i�:tdt

= �iF [yi(t)] (�)

Thus F [y(t)] (�) = ir�F [x(t)] (�).

Theorem 2.11 (Complex conjugation) Let x(t) 2 L2 (Rn) ; then

F
h
x(t)

i
(�) = F [x(t)] (��):

Proof. Let y(t) = x(t); then

F
h
x(t)

i
(�) =

1�p
2�
�n Z

Rn
x(t)e�i�:tdt

=
1�p
2�
�n Z

Rn
x(t)ei�:tdt

=
1�p
2�
�n Z

Rn
x(t)ei�:tdt

= F [x(t)] (��):

Theorem 2.12 (Duality) Let x(t) 2 L2 (Rn) ; then

F [bx(t)] (�) = x (��) :
Proof. Let y(t) = bx(t); then

F [y(t)] (�) = 1�p
2�
�n Z

Rn
bx(t)e�i�:tdt

=
1�p
2�
�n Z

Rn
bx(t)ei(��):tdt

= x (��) :

Theorem 2.13 (Separability) Let x1(t1); :::; xn(tn) 2 L2 (R) ; then

F [x1(t1):::xn(tn)] (�1; :::; �n) = F [x1(t1)] (�1) :::F [xn(tn)] (�n) :

Proof. This follow from the separability of the complex exponential

1p
(2�)

Z
R
:::

1p
(2�)

Z
R
x1(t1):::xn(tn)e

�i(�1t1+�2t2+:::+�ntn)dt1:::dtn

=

 
1p
(2�)

Z
R
x1(t1)e

�i�1t1dt1

!
:::

 
1p
(2�)

Z
R
xn(tn)e

�i�ntndtn

!
= F [x1(t1)] (�1) :::F [xn(tn)] (�n) :

7
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Theorem 2.14 (Parseval relation) Let x(t) and y(t) in L2 (Rn) ; thenZ
Rn
x(t)y(t)dt =

Z
Rn
(F [x(t)] (�))

�
F [y(t)] (�)

�
d�:

Proof. Let r(t) = y(t) and s(t) = x(t)r(t); then

F [s(t)] (�) =
Z
Rn
(F [x(t)] (�)) (F [r(t)] (� � �)) d�

=

Z
Rn
(F [x(t)] (�))

�
F [y(t)] (� � �)

�
d�

Evaluating at � = 0;

F [s(t)] (0) =
Z
Rn
x(t)y(t)dt =

Z
Rn
(F [x(t)] (�))

�
F [y(t)] (�)

�
d�:

If x(t) = y(t); we obtain
R
Rn jx(t)j

2
dt =

R
Rn jF [x(t)] (�)j

2
d�:

3 Multidimensional windowed Fourier transform

One of the basic problems encountered in signal representations using conventional Fourier transform (FT) is the

ine¤ectiveness of the Fourier kernel to represent and compute location information. One method to overcome such a

problem is the windowed Fourier transform (WFT). Moreover, in practice, most natural signals are non-stationary.

In order to characterize a non-stationary signal properly, the windowed Fourier transform (WFT) is commonly used.

in this section, we introduce the multidimensional windowed Fourier transform.

De�nition 2 Let 	 be a given multidimensional window function in L2 (Rn) ; then the multidimensional window
Fourier transform (MWFT) of any function x(t) 2 L2 (Rn) is de�ned and denoted as

V	 [x(t)] (b; �) =
1�p
2�
�n Z

Rn
e�i�:tx(t)	 (t� b)dt; b; � 2Rn: (3.1)

Further, the WFT (3:1) can be rewritten as

V	 [x(t)] (b; �) = F
h
x(t)	 (t� b)

i
; (3.2)

Applying inverse FT (2:2), (3:2) yields

x(t)	 (t� b) = F�1 [V	 [x(t)] (b; �)] (3.3)

=
1�p
2�
�n Z

Rn
ei�:tV	 [x(t)] (b; �) d�

Multiplying (3:3) both sides by 	(t� b) and then integrating with respect to db, we get

x(t) k	k2 = 1�p
2�
�n Z

Rn

Z
Rn
ei�:tV	 [x(t)] (b; �)	 (t� b) d�db:

Equivalently, we have

x(t) =
1�p

2�
�n k	k2

Z
Rn

Z
Rn
ei�:tV	 [x(t)] (b; �)	 (t� b) d�db: (3.4)

equation (3:4) gives the inversion formula corresponding to MWFT (3:1).

8
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Theorem 3.1 For any two functions x(t) and y(t) in L2 (Rn) ; we have following

i) Linearity
V	 [�x(t) + �y(t)] (b; �) = �V	 [x(t)] (b; �) + �V	 [y(t)] (b; �) :

ii) Orthogonality
hV	 [x(t)] (b; �) ;V	 [y(t)] (b; �)i = k	k2 hx(t); y(t)i :

Proof. For ii), by de�nition (2), we have

hV	 [x(t)] (b; �) ;V	 [y(t)] (b; �)i =
Z
Rn

Z
Rn
V	 [x(t)] (b; �)V	 [y(t)] (b; �)d�db

=

Z
Rn

Z
Rn
V	 [x(t)] (b; �)

 
1�p
2�
�n Z

Rn
e�i�:ty (t)	 (t� b)dt

!
d�db

=

Z
Rn

Z
Rn

 
1�p
2�
�n Z

Rn
ei�:tV	 [x(t)] (b; �) d�

!
y (t)	 (t� b) dtdb:

By virtue of Equation (3:3), we have

hV	 [x(t)] (b; �) ;V	 [y(t)] (b; �)i =
Z
Rn

Z
Rn
x(t)	 (t� b)	 (t� b) y (t)dtdb

=

Z
Rn
x(t)y (t)dt

Z
Rn
	(t� b)	 (t� b) db

= k	k2 hx(t); y(t)i :

Next, we introduce the multidimensional fractional Fourier transform as a generalization of the classical multidi-

mensional Fourier transform.

4 Multidimensional fractional Fourier transform

The fractional Fourier transform was introduced by Namias (1980) and a rigorous mathematical framework of the

properties of fractional Fourier transform the Schwartz space of rapidly decreasing functions was given by McBride

and Kerr (1987). Let us de�ne multidimensional fractional Fourier transform.

De�nition 3 Let x(t) be a signal in L2 (Rn) :The multidimensional fractional Fourier transform with order � =

(�1; �2; :::; �n) 2 (��; �)non L1 (Rn) of x(t) is de�ned by

F� [x(t)] (�) =
Z
Rn
K� (t; �)x (t) dt; (4.1)

where K� (t; �) =
nY
i=1

K�i (ti;�i) and K�i (ti;�i) the kernel of the FRFT and is given by

K�i (ti;�i) =

8><>:
c(�i)p
2�
eifa(�i)[t

2
i+�

2
i�2b(�i)ti�i]g for �i 6= k�;

� (ti��i) for �i = 2k�;

� (ti+�i) for �i = (2k � 1)�; k 2 Z

9
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where a (�i) = cot�i=2; b (�i) = sec�i; c (�i) =
p
1� i cot�i; and the corresponding inversion formula is also a

MFRFT is given by

x(t) = F�� fF� [x(t)] (�)g (t) =
Z
Rn
F� [x(t)] (�)K�� (t; �) d�: (4.2)

It is easy to see that, when �i = 0; �=2,� and and 3�=2 for i = 1; :::; n, the MFRFT is reduced to the identity

operation, the MFT, time-reverse operation, and the MIFT, respectively. For each � 2 Rn f0g ; we de�ne

e�;� (t) = e
i�
Pn

i=1 a(�i)t
2
i ;8t 2 Rn:

It is easy to observe that e�;�� (t) = e��;� (t) and the multidimensional fractional Fourier transform of x (t) (4:1)

can be rewritten as

F� [x(t)] (�) = c (�) e�;1 (�)F (e�;1x) (�1 csc�1; :::; �n csc�n) ; (4.3)

where c (�) = c (�1) ::::c (�n) and F (e�;1x) is the Fourier transform of e�;1x: Using this notation, we can rewrite

K� (t; �) =
c (�)�p
2�
�n e�;1 (t) e�;1 (�) e�iPn

i=1 ti�i csc�i :

From (4:3), it is clear that F� [x(t)] (�) 2 C0 (Rn) for all x(t) 2 L2 (Rn) :
Next, we highlight some properties of MFRFT.

Theorem 4.1 Let x(t), y(t) in L2 (Rn) and k;�0 2 Rn; then the MFRFT satis�es the following orthogonality

Relation:

hF� [x(t)] ;F� [y(t)]i = hx(t); y(t)i :

Proof. We have

hF� [x(t)] ;F� [y(t)]i =
Z
Rn
F� [x(t)] (�)F� [y(t)] (�)d�

=

Z
Rn

Z
Rn

Z
Rn
K� (t; �)x (t)K� (s; �) y (s) dsdtd�

=

Z
Rn

Z
Rn
x (t) y (s)

�Z
Rn
K� (t; �)K� (s; �)d�

�
dsdt

=

Z
Rn

Z
Rn
x (t) y (s)� (t� s) dsdt

=

Z
Rn
x (t) y (s)dt

= hx(t); y(t)i :

In the following, we introduce multidimensional linear canonical transform, which is a generalized version of the

classical Fourier transform with four parameters.

5 Multidimensional linear canonical transform

The linear canonical transform (LCT) introduced by Moshinsky and Quesne (1971) have proved useful and appro-

priate for investigating deep problems in science and engineering (Bhat 2023). It encompasses several well known
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signal processing transforms as special cases including the Fourier transform, the fractional Fourier transform, the

Fresnel transform, and even simple multiplication by quadratic phase factors (Healy et al. 2016). Despite enormous

lucubrations in the theory of linear canonical transforms, the multidimensional LCT involving a general 2n � 2n
real, symplectic matrix M with n(2n+ 1) independent parameters is yet to be explored exclusively. We shall de�ne

multidimensional linear canonical transform (MLCT).

De�nition 4 For any 2n� 2n real, symplectic matrix M2n�2n =

"
A B

C D

#
; the multidimensional linear canonical

transform for any x (t) 2 L2 (Rn) is de�ned by

LM [x (t)] (�) =
Z
Rn
x (t)KM (t; �) dt (5.1)

where KM (t; �) is the kernel and is given by

KM (t; �) = 
 (B;n) exp
(
i

�
�>DB�1��2�>B�>t+ t>B�1At

�
2

)
; det jBj 6= 0 (5.2)

where 
 (B;n) = 1
(2�)n=2jdetBj1=2 :

For a given real, symplectic matrix M; the multidimensional linear canonical transform kernel (5:2) satis�es the

following properties:

i KM�1 (�; t) = KM (t; �);

ii)
R
Rn KM (t; �)KM�1 (!; t) dt =� (! � �) :

The inversion formula associated with the multidimensional LCT is given by

f(t) = LM�1 fLM [x (t)] (�)g (t) =
Z
Rn
LM [x (t)] (�)KM (t; �)d�:

For typographical convenience we write the 2n � 2n matrix M = (A;B : C;D) : the LCT boils down to various

integral transforms such as:

i) When the sub-matrices of the real, symplectic matrixM = (A;B : C;D) are chosen as A = diag (a11; :::; ann) ; B =

(b11; :::; bnn) ; C = diag (c11; :::; cnn) and ; D = (d11; :::; dnn) ; the multidimensional LCT (5:1) yields the n-

dimensional separable linear canonical transform:

LM [x (t)] =
1

(2�)
n=2
���Yn

i=1
bii

���1=2
Z
Rn
x (t) exp

(
i

�
dii�

2
i �2�iti+aiit2i

�
2bii

)
dt:

ii) For the symplectic matrix M = (In cos �; In sin �;�In sin �; In cos �) ; the multidimensional LCT (5:1) yields the
n-dimensional non-separable fractional Fourier transform:

F� [x (t)] (�) = 1

(2�)
n=2 jsin �jn=2

Z
Rn
x (t) exp

8<: i
�
�>� + t>t

�
cot �

2
� i�>t csc �

9=; dt:
11
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iii) In the case the sub-matrices the real, sympletic matrixM = (A;B : C;D) are chosen asA = D = diag (cos �1; :::; cos �n) ;

B = �C = (sin �1; :::; sin �n) ; the multidimensional LCT (5:1) yields the n-dimensional separable fractional

Fourier transform:

F (�1;:::;�n) [x (t)] (�) = 1

(2�)
n=2
���Yn

i=1
sin �i

���1=2
Z
Rn
x (t) exp

(
i
nX
i=1

 �
�2i +t

2
i

�
cot �i

2
� �iti csc �i

!)
dt:

iv) For the matrix M = (In; B : 0; In) ; the multidimensional LCT (5:1) reduces to the n-dimensional non-separable

Fresnel transform:

FM [x (t)] (�) =
1

(2�)
n=2 jdetBj1=2

Z
Rn
x (t) exp

(
i

�
�>B�1��2�>B�>t+ t>B�1t

�
2

)
dt:

v) Choosing the sub-matrices as A = D = In; B = diag (b11; :::; bnn) ; C = 0 the multidimensional LCT (5:1) reduces

to the n-dimensional non-separable Fresnel transform:

F(b11;:::;bnn) [x (t)] (�) =
1

(2�)
n=2

����Yn

i=1
bii

����1=2
Z
Rn
x (t) exp

(
i

nX
i=1

 �
�2i �2�iti+t2i

�
2bii

!)
dt:

vi) When M = (0; In : �In;0), the multidimensional LCT (5:1) reduces to the classical n-dimensional Fourier

transform:

F [x (t)] (�) = 1

(2�)
n=2

Z
Rn
x (t) e�i�:tdt:

Here, we shall digress a bit to gain an intuition regarding the computational complexity of the multi-dimensional

linear canonical transform de�ned in (5:1). For any x (t) 2 L2 (Rn), the multi-dimensional LCT with respect to a
real, symplectic matrix M = (A;B : C;D) can be expressed as

LM [x (t)] (�) =
1

(2�)
n=2 jdetBj1=2

exp

�
i
�>DB�1�

2

�Z
Rn
x (t) exp

(
i
�
t>B�1At

�
2

)
e�i(B

�1�)
>
tdt (5.3)

=
1

(2�)
n=2 jdetBj1=2

exp

�
i
�>DB�1�

2

�
F [g (t)]

�
B�1�

�
where g(t) = x(t) exp

�
i(t>B�1At)

2

�
:

Thus, it is clear from (5:3), that multidimensional LCT can be regarded as a chirp-Fourier-chirp transformation.

Therefore, the computational complexity of the multi-dimensional linear canonical transform is determined by that

of the traditional Fourier transform. As such, the conventional fast Fourier transform can be employed for executing

a speedy computation of the multi-dimensional linear canonical transform.

Next, we investigate some basic properties associated with LCT.

Theorem 5.1 Let x(t); y(t) 2 L2 (Rn) and k;�0 2 Rn; then the MLCT satis�es following properties:

1. Parity:

LM [x(�t)] (�) = LM [x(t)] (��) :

12
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2. Orthogonality Relation:

hLM [x(t)] ;LM [y(t)]i = hx(t); y(t)i :

Proof. To be speci�c, we shall only prove the parity property, the rest of the propertie follows similarly. For any
k 2 Rn, we have

LM [x (�t)] (�) =
Z
Rn
KM (t; �)x (�t) dt

=
1

(2�)
n=2 jdetBj1=2

Z
Rn
x (t) exp

(
i

�
�>DB�1�+2�>B�>t+ t>B�1At

�
2

)
dt

= LM [x(t)] (��) :

6 Multidimensional quadratic-phase Fourier transform

The most neoteric generalization of the classical Fourier transform (FT) with �ve real parameters appeared via

the theory of reproducing kernels is known as the quadratic-phase Fourier transform (QPFT). It treats both the

stationary and nonstationary signals in a simple and insightful way that are involved in radar, signal processing, and

other communication systems (see Bhat 2023 and references therein). Here, we gave the notation and de�nition of

the quadratic-phase Fourier transform and study some of its properties.

In this section we introduce the de�nition of the multidimensional quadratic-phase Fourier transform which is a

generalization of the classical quadratic-phase Fourier transform.

De�nition 5 For a real parameter set � = (a; b; c; d; e) with b 6= 0; the multidimensional quadratic-phase Fourier

transform of any signal x (t) 2 L2 (Rn) is de�ned as

Q� [x (t)] (�) =

Z
Rn
K� (t; �)x (t) dt; (6.1)

where K� (t; �) =
nY
i=1

K�i (ti;�i) and K�i (ti;�i) the kernel of the quadratic-phase Fourier transform and is given

(QFFT) and is given by

K�i (ti;�i) =
1p
2�
exp

�
�i
�
at2i+bti�i+c�

2
i +dti+e�i

�	
(6.2)

and corresponding inversion formula is given by

x (t) = Q�1� (Q� [x (t)] (�)) (t) =

Z
Rn
K� (t; �)Q� [x (t)] (�) d�:

By appropriately choosing parameters in � = (a; b; c; d; e) ; de�nition (5) allows us to make the following comments

regarding the notion of multidimensional quadratic-phase Fourier transform:

i) Choosing the parametric set � = (0; 1; 0; 0; 0), the MQPFT (6:1) boils down to the classical multidimensional

Fourier transform (FT):

Q� [x (t)] (�) = F [x (t)] (�) :

13



Mathematics and Statistics - General and Practical Approaches  

Scientific Knowledge Publisher (SciKnowPub), USA 
 

 

 

 

  

ii) When � = (� cot �i=2; csc �i;� cot �i=2; 0; 0) ; i = 1; :::; n then, multiplying (6:1) with
p
1� i cot �i; i = 1; :::; n

yields the multidimensional fractional Fourier transform

Q� [x (t)] (�) = F� [x(t)] (�) :

iii) When � =
�
� a
2b ;

1
b ;�

c
2b ; 0; 0

�
; and then multiplying (6:1) with 1=

p
ib the MQPFT (6:1) becomes the MlCT:

Q� [x (t)] (�) = L� [x (t)] (�) :

Now, we will establish some properties of the multidimensional quadratic-phase Fourier transform.

Theorem 6.1 Let x(t); y(t) 2 L2 (Rn) and k;�0 2 Rn; then the MQPFT satis�es following properties:

1. Linearity:

Q� [�x(t) + �y(t)] (�) = �Q� [x(t)] (�) + �Q� [y(t)] :

2. Parity:

Q� [x(�t)] (�) = Q�0 [x(t)] (��) ;

where �0 = (a; b; c;�d;�e)

3. Conjugation:

Q�

h
x(t)

i
(�) = Q�� [x(t)] (�);

where �� = (�a;�b;�c;�d;�e)

4. Orthogonality Relation:

hQ� [x(t)] ; QM [y(t)]i =
1

bn
hx(t); y(t)i :

Proof. For the sake of brevity, we avoid proof.

7 Conclusion

In this paper a dynamically analysis was conducted to investigate possible extension of one dimensional transform

to a generalized multidimensional one. The proposed tools, namely Fourier transform and multidimensional scaling,

proved to be assertive methods to analyze such transform, the �rst is to generalize the dynamics and the second for

revealing the clusters. In future, this approach should be applied for other transforms characteristics like the wavelets

and/or Laplace. In this perspective, the replicated multidimensional technique can be used to analyze the spatial data

or spatiotemporal economics. So, we have proposed the generalized multidimentional Fourier frequency inherently,

associated with multidimensional Fourier transform. Therfore, we are able to provide physical meaning of so called

negative frequencies in multidimensional Fourier transform (M�FT ), which in turn provide multidimensional spatial
and spatio-temporal data analysis. The complex exponential representation of sinusoidal function always yields two

frequencies, negative frequency corresponding to positive frequency and vice versa, in the multidimensional Fourier

spectrum. Thus, using theM�FT , we propose multidimensional transform and associated multidimensional analytic
signal (M � S) with following properties: (a) the extra and redundant positive, negative, or both frequencies,
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introduced due to complex exponential representation of multidimensional Fourier spectrum, are suppressed, (b) real

part ofM�S is original signal, (c) real and imaginary part ofM�S are orthogonal, and (d) the magnitude envelope
of an original signal is obtained as the magnitude of its associated M � S, which is the instantaneous amplitude of
the M � S. The proposed M � T and associated M � S are generalization respectively.

Appendix

A summary table of some properties of Multidimensional Fourier transform

Domain (non-periodic) Continuous-domain Discrete-domain (�)

Name of the transform Continuous-domain Fourier transform Discrete-domain Fourier transform

Signals and domains
x(t) ! F [x (t)] (�) = bx(t);

t;k; �; �0 2 Rn
x(t) ! F [x (t)] (�) = bx(t);

t;k 2�; �; �0 2 Rn

Periodicity none F (x [t]) (� + �) = F [x (t)] (�) ; � 2 �
Period none t;P�; jP�j = 1=d (�)
Analysis F [x (t)] (�) = 1

(
p
2�)

n

R
Rn e

�i�:tx (t) dt F (x [t]) (�) =
P

t2� e
�i2��:tx [t]

Synthesis x (t) = 1

(
p
2�)

n

R
Rn e

i�:tF [x (t)] (�) d� x [t] = d (�)
R
P�
ei2��:tF (x [t]) (�) d�

Linearity F [Ax(t) +By(t)] (�) = Abx(t) +Bby(t) F [Ax [t] +By [t]] (�) = Abx(t) +Bby(t)
Translation F [x(t� k)] (�) = e�ik:�bx(t) F (x [t� k]) (�) = ei2�k:�bx(t)
Modulation F

�
ei�0:tx(t)

�
(�) = F [x(t)] (� � �0) F

�
ei2��0:tx [t]

�
(�) = F (x [t]) (� � �0) ;

Convolution F [(x � y) (t)] (�) = (2�)
n
2 bx(t)by(t) F ((x � y) [t]) (�) = bx(t)by(t)

Multiplication F [x(t)y(t)] (�) = 1

(
p
2�)

n bx(t) � by(t) F [x [t] y(t)] (�) = d (�) bx(t) � by(t)
Automorphism of domain F [x(At)] (�) = 1

jdet(A)jF [x(t)]
�
A�>�

�
F [x(At)] (�) = F (x [t])

�
A�>�

�
Orthogonality hF [x(t)] ;F [y(t)]i = hx(t); y(t)i hF (x [t]) ;F (y [t])i = hx(t); y(t)i
Di¤erentiation F [rtx(t)] (�) = i�F [x(t)] (�) N=A

Di¤erentiation in frequency F [tx(t)] (�) = ir�F [x(t)] (�) F (tx [t]) (�) = i
(2�)nr�F (x [t]) (�)

Complex conjugation F
h
x(t)

i
(�) = F [x(t)] (��) F

�
x [t]

�
(�) = F (x [t]) (��)

Parseval
R
Rn x(t)y(t)dt =

R
Rn (bx(t))�by(t)� d� P

t2� x(t)y(t)dt =d (�)
R
P�
(bx(t))�by(t)� d�

Duality F [bx(t)] (�) = x (��) F (ex (t)) [�] = d (�) ex (��)
Properties of Multidimensional Fourier transform
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